正则的扩展

RegExp构造函数

在ES5中,RegExp构造函数只能接受字符串作为参数。

var regex = new RegExp("xyz", "i");
// 等价于
var regex = /xyz/i;

ES6允许RegExp构造函数接受正则表达式作为参数,这时会返回一个原有正则表达式的拷贝。

var regex = new RegExp(/xyz/i);

如果使用RegExp构造函数的第二个参数指定修饰符,则返回的正则表达式会忽略原有的正则表达式的修饰符,只使用新指定的修饰符。

new RegExp(/abc/ig, 'i').flags
// "i"

字符串的正则方法

字符串对象共有4个方法,可以使用正则表达式:match()、replace()、search()和split()。

ES6将这4个方法,在语言内部全部调用RegExp的实例方法,从而做到所有与正则相关的方法,全都定义在RegExp对象上。

  • String.prototype.match 调用 RegExp.prototype[Symbol.match]
  • String.prototype.replace 调用 RegExp.prototype[Symbol.replace]
  • String.prototype.search 调用 RegExp.prototype[Symbol.search]
  • String.prototype.split 调用 RegExp.prototype[Symbol.split]

u修饰符

ES6对正则表达式添加了u修饰符,含义为“Unicode模式”,用来正确处理大于\uFFFF的Unicode字符。也就是说,会正确处理四个字节的UTF-16编码。

/^\uD83D/u.test('\uD83D\uDC2A')
// false
/^\uD83D/.test('\uD83D\uDC2A')
// true

上面代码中,“\uD83D\uDC2A”是一个四个字节的UTF-16编码,代表一个字符。但是,ES5不支持四个字节的UTF-16编码,会将其识别为两个字符,导致第二行代码结果为true。加了u修饰符以后,ES6就会识别其为一个字符,所以第一行代码结果为false。

一旦加上u修饰符号,就会修改下面这些正则表达式的行为。

(1)点字符

点(.)字符在正则表达式中,含义是除了换行符以外的任意单个字符。对于码点大于0xFFFF的Unicode字符,点字符不能识别,必须加上u修饰符。

var s = "𠮷";

/^.$/.test(s) // false
/^.$/u.test(s) // true

上面代码表示,如果不添加u修饰符,正则表达式就会认为字符串为两个字符,从而匹配失败。

(2)Unicode字符表示法

ES6新增了使用大括号表示Unicode字符,这种表示法在正则表达式中必须加上u修饰符,才能识别。

/\u{61}/.test('a') // false
/\u{61}/u.test('a') // true
/\u{20BB7}/u.test('𠮷') // true

上面代码表示,如果不加u修饰符,正则表达式无法识别\u{61}这种表示法,只会认为这匹配61个连续的u。

(3)量词

使用u修饰符后,所有量词都会正确识别大于码点大于0xFFFF的Unicode字符。

/a{2}/.test('aa') // true
/a{2}/u.test('aa') // true
/𠮷{2}/.test('𠮷𠮷') // false
/𠮷{2}/u.test('𠮷𠮷') // true

另外,只有在使用u修饰符的情况下,Unicode表达式当中的大括号才会被正确解读,否则会被解读为量词。

/^\u{3}$/.test('uuu') // true

上面代码中,由于正则表达式没有u修饰符,所以大括号被解读为量词。加上u修饰符,就会被解读为Unicode表达式。

(4)预定义模式

u修饰符也影响到预定义模式,能否正确识别码点大于0xFFFF的Unicode字符。

/^\S$/.test('𠮷') // false
/^\S$/u.test('𠮷') // true

上面代码的\S是预定义模式,匹配所有不是空格的字符。只有加了u修饰符,它才能正确匹配码点大于0xFFFF的Unicode字符。

利用这一点,可以写出一个正确返回字符串长度的函数。

function codePointLength(text) {
  var result = text.match(/[\s\S]/gu);
  return result ? result.length : 0;
}

var s = "𠮷𠮷";

s.length // 4
codePointLength(s) // 2

(5)i修饰符

有些Unicode字符的编码不同,但是字型很相近,比如,\u004B与\u212A都是大写的K。

/[a-z]/i.test('\u212A') // false
/[a-z]/iu.test('\u212A') // true

上面代码中,不加u修饰符,就无法识别非规范的K字符。

y修饰符

除了u修饰符,ES6还为正则表达式添加了y修饰符,叫做“粘连”(sticky)修饰符。

y修饰符的作用与g修饰符类似,也是全局匹配,后一次匹配都从上一次匹配成功的下一个位置开始。不同之处在于,g修饰符只要剩余位置中存在匹配就可,而y修饰符确保匹配必须从剩余的第一个位置开始,这也就是“粘连”的涵义。

var s = "aaa_aa_a";
var r1 = /a+/g;
var r2 = /a+/y;

r1.exec(s) // ["aaa"]
r2.exec(s) // ["aaa"]

r1.exec(s) // ["aa"]
r2.exec(s) // null

上面代码有两个正则表达式,一个使用g修饰符,另一个使用y修饰符。这两个正则表达式各执行了两次,第一次执行的时候,两者行为相同,剩余字符串都是“_aa_a”。由于g修饰没有位置要求,所以第二次执行会返回结果,而y修饰符要求匹配必须从头部开始,所以返回null。

如果改一下正则表达式,保证每次都能头部匹配,y修饰符就会返回结果了。

var s = "aaa_aa_a";
var r = /a+_/y;

r.exec(s) // ["aaa_"]
r.exec(s) // ["aa_"]

上面代码每次匹配,都是从剩余字符串的头部开始。

使用lastIndex属性,可以更好地说明y修饰符。

const REGEX = /a/g;

REGEX.lastIndex = 2; // 指定从第三个位置y开始搜索
const match = REGEX.exec('xaya');

match.index
// 3
REGEX.lastIndex
// 4
REGEX.exec('xaxa')
// null

上面代码中,lastIndex属性指定每次搜索的开始位置,g修饰符从这个位置开始向后搜索,直到发现匹配为止。

y修饰符同样遵守lastIndex属性,但是要求必须在lastIndex指定的位置发现匹配。

const REGEX = /a/y;

// 第三个位置y不匹配
REGEX.lastIndex = 2;
console.log(REGEX.exec('xaya')); // null

// 第四个位置出现匹配
REGEX.lastIndex = 3;
const match = REGEX.exec('xaxa');
match.index // 3
REGEX.lastIndex // 4

进一步说,y修饰符号隐含了头部匹配的标志ˆ。

/b/y.exec("aba")
// null

上面代码由于不能保证头部匹配,所以返回null。y修饰符的设计本意,就是让头部匹配的标志ˆ在全局匹配中都有效。

在split方法中使用y修饰符,原字符串必须以分隔符开头。这也意味着,只要匹配成功,数组的第一个成员肯定是空字符串。

// 没有找到匹配
'x##'.split(/#/y)
// [ 'x##' ]

// 找到两个匹配
'##x'.split(/#/y)
// [ '', '', 'x' ]

后续的分隔符只有紧跟前面的分隔符,才会被识别。

'#x#'.split(/#/y)
// [ '', 'x#' ]

'##'.split(/#/y)
// [ '', '', '' ]

下面是字符串对象的replace方法的例子。

const REGEX = /a/gy;
'aaxa'.replace(REGEX, '-') // '--xa'

上面代码中,最后一个a因为不是出现下一次匹配的头部,所以不会被替换。

如果同时使用g修饰符和y修饰符,则y修饰符覆盖g修饰符。

y修饰符的主要作用,是从字符串提取token(词元),y修饰符确保了匹配之间不会有漏掉的字符。

function tokenize(TOKEN_REGEX, str) {
  let result = [];
  let match;
  while (match = TOKEN_REGEX.exec(str)) {
    result.push(match[1]);
  }
  return result;
}

const TOKEN_Y = /\s*(\+|[0-9]+)\s*/y;
const TOKEN_G  = /\s*(\+|[0-9]+)\s*/g;

tokenize(TOKEN_Y, '3 + 4')
// [ '3', '+', '4' ]
tokenize(TOKEN_G, '3 + 4')
// [ '3', '+', '4' ]

上面代码中,如果字符串里面没有非法字符,y修饰符与g修饰符的提取结果是一样的。但是,一旦出现非法字符,两者的行为就不一样了。

tokenize(TOKEN_Y, '3x + 4')
// [ '3' ]
tokenize(TOKEN_G, '3x + 4')
// [ '3', '+', '4' ]

上面代码中,g修饰符会忽略非法字符,而y修饰符不会,这样就很容易发现错误。

sticky属性

与y修饰符相匹配,ES6的正则对象多了sticky属性,表示是否设置了y修饰符。

var r = /hello\d/y;
r.sticky // true

flags属性

ES6为正则表达式新增了flags属性,会返回正则表达式的修饰符。

// ES5的source属性
// 返回正则表达式的正文
/abc/ig.source
// "abc"

// ES6的flags属性
// 返回正则表达式的修饰符
/abc/ig.flags
// 'gi'

RegExp.escape()

字符串必须转义,才能作为正则模式。

function escapeRegExp(str) {
  return str.replace(/[\-\[\]\/\{\}\(\)\*\+\?\.\\\^\$\|]/g, "\\$&");
}

let str = '/path/to/resource.html?search=query';
escapeRegExp(str)
// "\/path\/to\/resource\.html\?search=query"

上面代码中,str是一个正常字符串,必须使用反斜杠对其中的特殊字符转义,才能用来作为一个正则匹配的模式。

已经有提议将这个需求标准化,作为RegExp对象的静态方法RegExp.escape(),放入ES7。2015年7月31日,TC39认为,这个方法有安全风险,又不愿这个方法变得过于复杂,没有同意将其列入ES7,但这不失为一个真实的需求。

RegExp.escape("The Quick Brown Fox");
// "The Quick Brown Fox"

RegExp.escape("Buy it. use it. break it. fix it.")
// "Buy it\. use it\. break it\. fix it\."

RegExp.escape("(*.*)");
// "\(\*\.\*\)"

字符串转义以后,可以使用RegExp构造函数生成正则模式。

var str = 'hello. how are you?';
var regex = new RegExp(RegExp.escape(str), 'g');
assert.equal(String(regex), '/hello\. how are you\?/g');

目前,该方法可以用上文的escapeRegExp函数或者垫片模块regexp.escape实现。

var escape = require('regexp.escape');
escape('hi. how are you?')
"hi\\. how are you\\?"